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Eigen Theory for Optimal Signal Combining:
A Unified Approach
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In this article, we establish a general theoretical framework for optimal signal
combining using the eigen theory approach. We also describe how the eigen ap-
proach can be applied to current and future arraying implementation.

[. Introduction

In the past few years, there has been much interest at JPL in the investigation and development of
efficient signal arraying techniques. As JPL missions begin to adopt Ka-band (32-GHz) for downlink
communications, and the mechanical control and structural integrity of large antennas approach their
limits, using advanced signal processing to array smaller antennas becomes a cost effective and flexible
option for the Deep Space Network (DSN) to meet its current and future needs. Arraying can be applied
to the feed horn at the front end of the antenna to increase the efficiency of the front end, to perform
atmospheric noise cancellation, and to assist antenna pointing [1-4]. It can also be applied to intra- and
inter-complex antenna arraying to increase the effective aperture, for example, in full spectrum combining,
complex symbol combining, and symbol combining [5,6]. The effects of colored noise on full spectrum
combining and complex symbol combining have also been analyzed [7].

Arraying has been used in many missions since the 1970s [8]. The more recent ones are the Voyager
encounters with Uranus and Neptune that used symbol-stream combining; the ongoing Galileo S-band
(2.3-GHz) mission, which uses both full-spectrum combining and complex-symbol combining; and the
upcoming 34-m arraying task that uses full-spectrum combining to array several intracomplex 34-m
antennas to mimic the functionality of a single 70-m antenna. Currently, the DSN uses different combiner
architectures to combine signals for different combining schemes.

The key signal processing step in signal arraying is to find the set of combining weight coefficients that
maximizes the combined signal-to-noise ratio (SNR). The current full-spectrum combiner and complex-
symbol combiner assume uncorrelated noise! and weights the signal streams proportionally to the esti-
mated SNRs. More sophisticated schemes that take into account the noise correlation were proposed by
Victor Vilnrotter, Eugene Rodemich, Sam Dolinar, Harry Tan, and others [1-3,10,11]. Their approach
for finding optimal weights is to apply the Cauchy—Schwartz inequality to the SNR expression of the com-
bined output samples and to evaluate the weight vector that achieves the maximum SNR. This approach

L The full-spectrum combiner has added an ad hoc suboptimal scheme that subtracts the correlated noise from the received
signals where it is present (D. Rogstad and R. Kahn, personal communication, Jet Propulsion Laboratory, Pasadena,
California, April 16, 1996).



for finding the optimal combining weights is in fact a well-known technique in the adaptive arraying area
[9]. In this formulation, the optimal weight vector is expressed as the conjugate of the product of the
inverse of the noise correlation matrix, Oz, and the signal vector, s. This approach requires estimating
both the noise statistics and the signal statistics from the received observables.

In this article, we propose a unified approach to performing optimal signal combining using eigen
theory. Some special features of this approach are as follows:

(1) This scheme requires one to estimate only the pairwise noise correlations, and not the
signal statistics. The other statistics used are derived from the directly observed samples.
We will show in later sections that, by bypassing the signal statistics estimation, this
approach allows new ways to do signal arraying.

(2) The eigen approach is a generalization of the optimal signal combining techniques pre-
viously developed in [1] and [11].

(3) Tan [11] proposed an optimal combining scheme for uncorrelated and correlated noise,
but for residual carrier signals only. Rogstad [6] developed a full-spectrum combining
scheme for residual and suppressed carrier signals, but for uncorrelated noise only.2 This
scheme works on both residual and suppressed carriers, and for both correlated and
uncorrelated noise.

The rest of this article is organized as follows: Section II lays the theoretical framework of optimal
arraying. We first discuss the basic ideas of signal arraying and define the terminologies. We show
that we can cast the problem of finding the optimal weights into an eigen theory problem. We derive
the main theoretical results, which show that the optimal weights can be evaluated without using the
signal statistics. We prove that this scheme achieves the same optimal weights as derived from the
Cauchy—Schwartz inequality when specific assumptions required by the previous approaches are imposed
(see Section II.C). Section III ties our results to an information theoretic result described in [12] and
shows that the linear combining scheme proposed in this article achieves array channel capacity for a
broadband source in the presence of Gaussian noise. Section IV describes how the eigen approach for
signal combining can be applied to the current array feed combining, complex-symbol combining, and
full-spectrum combining implementations. Section V discusses future work and gives concluding remarks.

ll. Arraying Theory

A. Basic Definitions

We use the same arraying model as described in [12]. We consider transmitting a single source through
n channels, as illustrated in the array system in Fig. 1. Unless otherwise stated, all quantities are assumed
to be complex. Symbols in capital letters are used to denote random variables or random vectors, and
symbols in lower-case letters are used to represent deterministic quantities.® Let X7 = (X1, Xs,+, X,)
be the vector of transmitted signals, ZT = (Z1,Za,- -+, Zy,) be the vector of noise components, and
vyt = (Y1,Ya,---,Y,) be the vector of channel outputs. Let w? = (wi,ws, -, w,) be a complex
weight vector. Let ©x be the correlation matrix of X,* ©, be the correlation matrix of Z, and Oy

2 Ibid.
3 An exception is the notation for correlation matrices, ©, which we represent with capital Greek letters.

4 See Section I1.C on the discussion of © x for signals that are assumed to be deterministically related within the estimation
window and for signals that are stochastically related within the estimation window.
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Fig. 1. The array channel model.

be the correlation matrix of Y. The channel outputs are combined as shown in Fig. 2, and the SNR of
the scalar output V = w’Y is defined by Definition 1:

B. Optimal Weights for Arraying
With the above problem formulation, we now state and derive our first theorem in arraying.
Theorem 1. Based on the definition of SNR as given in Definition 1, the mazimum SNR of an array

system is the largest eigenvalue of @El@x, and the weight vector that mazimizes the SNR is the conjugate
of the corresponding eigenvector.

Proof: Using the standard vector gradient method, we differentiate Eq. (1) with respect to w and set
the resulting expression to 0. We obtain

This shows that the maximum SNR is the largest eigenvalue of @El@ x, and the optimal weight vector
is the conjugate of the corresponding eigenvector. 0
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Fig. 2. Linear combining of signals.

We have a few comments on Theorem 1:

(1) The general result of the ratio of two quadratic forms (z? Ax)/(2” Bx) (where B is
nonsingular) achieving stationary values at the roots of B~'4 is not new; in fact, it
can be found in the CRC Standard Mathematical Tables [13]. Here we provide a simple
proof to this result, and we believe that the application of this result in the context of
feed-forward linear combining is new.

(2) The result in Theorem 1 is directly derived from Definition 1. In this case, we still need to
estimate the signal statistics to find the optimal weights. For additive data-independent
noise, which accounts for most of our noise environment, ©y = Ox + O5. We rewrite
the SNR definition as Definition 2:

We now state the next theorem:

Theorem 2. Using Definition 2, the mazimum SNR of an array system is the largest eigenvalue of
@El@y minus one, and the weight vector that mazimizes the SNR is the conjugate of the corresponding
etgenvector.

Proof: Using the same gradient technique as in the proof of Theorem 1, we show that the maximum
of the ratio (wT Oy w*)/(wTOzw*) (and thus [(wl Oy w*)/(wT'Ozw*)] — 1) is the largest eigenvalue of
@El@y, and the optimal weight vector is the conjugate of the corresponding eigenvector. This completes
the proof. O

The important consequence of Theorem 2 is that it only requires estimation of the noise correlations.
The statistics of Y are derived from the directly observed samples. This avoids making additional as-
sumptions on the signal statistics and opens up new ways to perform faster and more accurate estimation
of combining weights. We will show in the following sections that this theoretical formulation offers new
practical ways to perform signal combining.



C. Comparisons With Previous Results

In this section, we show that Theorems 1 and 2 are consistent and generalize the previous results in
optimal signal combining. We discuss the results in [1] (uncorrelated noise) and [11] (correlated noise),
which evaluate the maximum SNR and find the optimal weights in terms of the noise and signal statistics.

(1) Uncorrelated noise [1]: In Vilnrotter’s article, the noise correlation matrix Oz is a di-
agonal matrix of (uncorrelated noise assumption) with elements of noise variance 20%71,

20%72, ey 20%771. The signal correlation matrix is of the form ©x = ﬁt where 1 is

defined as the conjugate transpose of a vector (gT = s*T). The optimal weight vec-
tor is given by Eq. (24) of [1]: w! = (s}/20%,85/203,---,s%/202). It can also be
written as w = (©,'s)*. The maximum achievable SNR is given by Eq. (23) of [1]:
SNRyaz = > i1 (Ii]*)/(202), and can be written as SN R4, = §T@21§. We multiply
@gl@x with w* and we get

0,'0xw" = 0,'ss10,'s
= SNRmao:®21§
= SNRmazw*

This shows that SN R, is an eigenvalue of 6216)(, and w* = @§1§ is the correspond-
ing eigenvector (Theorem 1).

(2) Correlated noise [11]: In Tan’s article, the optimal weight is given by Eq. (12) of [11]: w =
(@21§)*; and the maximum SNR is given by Eq. (13): SNR,,,0. = §T6§1§. Following the
same argument as in the uncorrelated noise case, we show that SN R,,,4; is an eigenvalue
of @21@;(, and w* = @21§ is the corresponding eigenvector (Theorem 1).

We conclude this section with a discussion of © x. Both [1] and [11] discuss the arraying problem in the
context of array feed combining of residual carrier signals; [1] and [11] measure the relative magnitudes
and phases between signals by estimating the individual residual carrier component s; from the observable
Y;. This requires averaging out the data and noise (assuming both the data and noise have zero means)
within an estimation window. The underlying assumption in this approach is that the residual carrier
components s;’s (which contain the magnitude and phase information of signals) remain constant in the
span of estimation. This assumption is valid for array feed, since all feed horns see the same signal at
the same time and the different phases are due solely to the fixed geometry of the feed arrangement.
This assumption is probably true for DSN ground antenna arraying, where the factors (e.g., wind gusts,
antenna mechanical movements, etc.) affecting signal magnitudes and phases are usually slow changing
compared to the estimation span. Thus, O x can be written as gT, and w = (9§1§)*, given in [11], gives
the optimal weight vector in this case.

In a general dynamic situation when the relative magnitudes and phases of signals can vary within the
estimation window, © x is not of the form gT, and the optimal weights can be found using Theorem 2.
Thus, this approach might be particularly useful for radio frequency interference cancellations, mobile
communications with multipaths, and military communications with jamming noise.



lll. Arraying Broadband Signals in the Presence of Gaussian Noise

In [12], we formulated the framework for evaluating the channel capacity of an array system. We
derived a closed-form general formula for the channel capacity when arraying a broadband signal (with
Gaussian distribution) in n Gaussian noise channels:

1
Corray = 3 log, (1 + §T®§1§) bits/channel use (3)

This formula applies to correlated and uncorrelated noise, as long as the Gaussian assumption holds and
the second-order statistics (correlation) of the signal and noise sources can be characterized. As discussed
in Section IV of [12], this formula depicts an arraying receiver structure that achieves channel capacity as
given in Eq. (3). This is done by linear combining of the received signals with the optimal weight, w
given by

optr

Wopy = a(©7'S)" (4)

Lop

where a is an arbitrary complex constant. As discussed in Section II.C, Eq. (4) is a special case of
Theorems 1 and 2. Thus, the eigen approach for optimal linear combining achieves channel capacity for
a broadband source in the presence of Gaussian noise.

A more interesting problem is to find out whether the eigen approach can achieve channel capacity for
a narrowband M-ary source in the presence of Gaussian noise. We conjecture that the eigen approach
can also achieve channel capacity in this case.

IV. Eigen Approach for Current Arraying Implementations

The theoretical treatment of arraying described in Section II provides a general framework for per-
forming optimal arraying using the pairwise correlations of the directly observed samples, Y, and the
estimated pairwise correlations of noise, Z.% In this section, we discuss how this approach can be applied
to enhance the current implementations.

A. Galileo’s Full-Spectrum Combining Task and 34-m Antenna-Arraying Task

Both implementations use full-spectrum combining, with the 34-m antenna-arraying task using more
hardware to improve the throughput rate.® Both systems perform combining before carrier, subcarrier,
and symbol synchronizations,” and are essentially designed to combine signals with uncorrelated noise
only.® Both implementations apply to the square-wave subcarrier modulated signals: they first open-loop
downconvert the IF signals to baseband, bandpass the 1st, 3rd, 5th, and 7th harmonics (positive and
negative) of the subcarrier signals, and translate each of the 8 harmonics to baseband. The signals of
each harmonic are first phase aligned before they are combined according to their respective estimated
SNR. The noise statistics can be obtained from any even harmonics where there are no spacecraft signals.
In Galileo’s implementation, the 10th harmonic is used internally as a noise reference channel. The
eigen approach is ideal for this setup. The 10th harmonics of the ith and jth subcarrier signals can
be used to compute the pairwise correlation EZ;Z} (thus the noise correlation matrix ©z). Similarly,

5 This is guaranteed by Theorem 2.

6 Galileo’s maximum throughput requirement is 640 symbols/second, and the 34-m-antenna arraying task’s maximum
throughput requirement is 6.6 megasymbols/second.

7In actual implementations, a coarse symbol synchronization is performed on each receiving signal stream to parse out the
samples of each symbol in order to boost up the SNR and to facilitate weight estimations.

8 See Footnote 1.



the received signals from different antennas of the kth harmonic can be used to construct the signal
correlation matrix ©y ;. The optimal weight vector of the kth harmonic is the eigenvector corresponding
to the largest eigenvalue of @El@y;k. Thus, this approach achieves optimal weights for both uncorrelated
and correlated noises and for both residual and suppressed carrier modulations.

B. Galileo’s Symbol Combiner Demodulator Task

Galileo’s symbol combiner demodulator performs complex symbol combining after subcarrier and
symbol synchronizations. Like the full-spectrum combining scheme, this scheme phase rotates to align
the received signals before combining, thus compromising its ability to optimally combine signals in the
presence of correlated noises. This approach of computing the eigen vector (the optimal weights) of
@2163/ orients the received signals to maximize the combined SNR.

C. Advanced Systems Array Feed Task

The current real-time seven-channel array feed prototype computes signal correlations and noise corre-
lations between the peripheral horns and the central horn only.® This setup works on broadband signals
only and requires that the antenna go on-source and off-source to collect signal and noise statistics. As
discussed in Section II, for a narrowband telemetry source, Tan [11] proposed to combine the signals with
the weight vector w = (@21 8)*, which is a special case of the eigen approach as discussed in this article.
The key difference is that Tan’s approach requires the estimation of s, and this demands the existence
of a carrier tone. The eigen approach requires the second-order statistics of the direct observables Y
instead; thus, it can apply to both residual and suppressed carrier modulations.

V. Conclusion

In this article, we described an optimal approach for performing signal combining using eigen theory.
This scheme applies to array feed combining, full-spectrum combining, complex symbol combining, and
symbol combining. This unified, generalized, yet optimized, approach to arraying implementation can
translate into a common implementation framework that would result in lower costs for production,
maintenance, and upgrading for current needs and to anticipate future needs. We believe that this
scheme is also suitable for radio frequency interference cancellations, mobile communications, and military
communications, but we do not discuss these issues here. We will perform extensive simulations to verify
and quantify the performance of this scheme. Future research includes the following:

(1) Investigate efficient techniques for matrix inversion, matrix multiplication, and eigenvalue
and eigenvector computations.

(2) Investigate techniques to estimate noise statistics for different kinds of noise (e.g., additive
white Gaussian noise, colored noise, jamming noise, etc.).

(3) Quantify and bound the number of samples required to obtain the reliable statistics for
different noise distributions.

(4) Investigate the update rules for ©y and Oy.
(5) Investigate applying this technique to mitigate radio frequency interference effects.

(6) Investigate applying this arraying scheme in the more dynamic military environment,
which is usually coupled with highly correlated noise (jamming) and fast changing signal
and noise statistics.

9 All pairwise correlations of signal and noise can be used in an off-line mode to combine prerecorded data and to deliver
theoretically optimal combining performance.
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